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MORL CONTROL SYSTEM INTEGRATION* 

By Pe ter  R.  Kurzhals** 
NASA Langley Research Center 

SUMMARY 

General mission modes and o r i en ta t ions  f o r  t h e  Manned Orb i t a l  Research 

Laboratory a r e  presented, and an in tegra ted  cont ro l  concept f o r  these  modes i s  

discussed. Schematics of t h e  base l ine  MORL cont ro l  system and t h e  primary sub- 

systems are used t o  develop the  cont ro l  component funct ions during both zero- 

g rav i ty  and a r t i f i c i a l - g r a v i t y  operat ions.  

s torage and r eac t ion  con t ro l  subsystems; and c h a r a c t e r i s t i c  computer resul ts  a r e  

included t o  i l l u s t r a t e  t he  con t ro l  system performance during the  o r b i t a l  mission. 

These r e s u l t s  consider centr i fuge operations,  aerodynamic and appl ied torques,  

Emphasis i s  placed on t h e  momentum 

CMG desa tura t ion ,  maneuver capabi l i ty ,  and wobble damping. 

INTRODUCTION 

To understand t h e  con t ro l  philosophy for t h e  Manned Orb i t a l  Research 

Laboratory, w e  m u s t  b r i e f l y  review the  laboratory mission and configuration. 

The MORL, shown i n  f i g u r e  1 during in j ec t ion  i n t o  o r b i t ,  i s  pr imar i ly  a zero- 

g rav i ty  labora tory  designed t o  support a crew of s ix  i n  a 200-nautical-mile 

o r b i t  f o r  up t o  5 years .  A f t e r  separat ion from i t s  booster,  t h e  unmanned l ab -  

o ra to ry  module i s  checked out and prepared f o r  rendezvous and manning. 

c a l  docking hangar allows crew t ransfer  i n t o  t h e  laborat,ory and a short-arm 

A coni- 

%his  paper summarizes the  r e s u l t s  developed by Douglas A i r c r a f t  Company, 2~ 3 

Bendix Ecl ipse  Pioneer Division,2 and NASA Langley Research Center i n  support of 
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centrifuge is used for crew conditioning in the zero-gravity environment. * Power 

for the laboratory is derived from a gimbaled solar cell array which must be, 

continuously alined normal to the solar radiation. 

4 

If artificial-gravity capability is desired at some later date, the same 

basic module, together with a spinup section, is launched into orbit as shown 

in figure 2. 

laboratory-booster combination rotates to produce the desired artificial-gravity 

field. 

The MORL module now remains attached to its booster, and the 

The function of the integrated control system for MORL is to orient or 

maneuver the laboratory as required by the experimental and operational mission 

while minimizing fixed system weight and propellant consumption. General accu- 

racy and maneuver requirements for the laboratory mission are given in refer- 

ence 1 and will not be repeated here. 

MORL ORIENTATION 

The primary orientations required during the mission are shown in figure 3. 

After injection, the unmanned laboratory is placed in a roll solar mode. For 

this mode the longitudinal or X-axis is pointed at the sun and the laboratory 

is rate stabilized about this axis. Reaction jets are used to maintain this sun 

alinement until rendezvous with the laboratory crew has been effected. 

After manning, the laboratory will have three principal orientations. For 

approximately 70 percent of the time it will be in a roll solar mode for which 

the Y-axis is controlled to be in the orbit plane. This orientation results in 

cyclic gravity gradient torques and allows the use of fixed solar panels. For 

about 24 percent of the time, rendezvous, orbit keeping, and earth oriented 

experiments will require a belly-down mode. In this mode, the Y-axis is aliried 



with'the local vertical and the X-axis points along the orbital velocity vector. 

TQe gimbaled solar panels are now driven to maintain solar alinement. 

remaining 6 percent of the time the laboratory w i l l  be in an arbitrary inertial 

mode, for which any inertial or celestial orientation can be provided to meet 

the experimental requirements. 

For the 

In the artificial gravity mode, the laboratory is deployed after manning 

and the minus Y-axis is then pointed at the sun. The solar panels remain fixed 

and the laboratory is precessed to maintain a solar orientation. 

INTEGRATED CONTROL SYSTEM 

A schematic of the integrated control system for MORL is shown in figure 4. 

The basic attitude reference elements are sun sensors, horizon sensors, and 

inertial rate integrating gyroscopes ( I R I G )  . 
ments are modified by the actuator selection logic for the specified modes and 

are used to actuate the momentum storage and reaction control systems. 

Signals generated by these ele- 

The momentum storage system for zero-gravity operation consists of two 

double-gimbal control moment gyros (CMG'S), alined with the laboratory X-axis 

and providing torques about the Y-axis and the Z-axis, and of two single-gimbal 

control moment gyros, alined with the Y-axis and providing torques about the 

X-axis. 

gradient torques, and maintain the vehicle orientation during operation of the 

onboard centrifuge. 

control and maneuvering. For artificial-gravity operation, the slngle-gimbal 

CMG's are desaturated and locked into position and the double-gimbal CMG's are 

precessed to the Y-axis. 

for the effects of crew motions and other applied torques. 

The CMG's compensate for the effects of cyclic aerodynamic and gravity 

In addition, these actuators are used for fine attitude 

These CMG's then act as wobble dampers and compensate 
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The r e a c t i o n  con t ro l  a c t u a t o r s  cons i s t  of four  s e t s  of GO-pound t h r u s t  

engines which provide maneuver c a p a b i l i t y  about a l l  t h r e e  axes of t h e  laborat,ory 

and serve f o r  desa tu ra t ion  of t h e  CMG's. The reac t ion  engines are a l s o  used f o r  

o r b i t  keeping and f o r  spin and precession c o n t r o l  i n  t h e  a r t i f i c i a l - g r a v i t y  

mode. 

A func t iona l  block diagram of t h e  i n t e g r a t e d  con t ro l  system i s  shown i n  

f i g u r e  5 .  Solar  d e t e c t o r s  are used t o  acquire  t h e  sun and t h e  l abora to ry  a t t i -  

tude i s  then monitored by means of both wide and narrow angle sun sensors.  

Earth horizon scanners provide a l o c a l  v e r t i c a l  reference and these  s igna l s ,  

together w i t h  I R I G  s igna l s ,  are used t o  s e l e c t  t h e  appropriate  ac tua to r  l o g i c  

f o r  t h e  momentum storage and r eac t ion  con t ro l  systems. The momentum storage 

system uses ON-OFF o r  proport ional  gimbal torque commands based on t h e  vehicle  

a t t i t u d e  and ra te  during t h e  nonspinning mode and proport ional  gimbal rate 

commands based on t h e  veh ic l e  rate and o f f - ax i s  rate i n t e g r a l  during t h e  

spinning mode. The r e a c t i o n  con t ro l  system provides f o r  r a t e - l imi t ed ,  f u e l  

optimal ON-OFF c o n t r o l  during t h e  nonspinning mode and uses  a masked sun sensor 

t o  generate con t ro l  commands f o r  precession c o n t r o l  during t h e  spinning mode. 

A t t i t ude  and rate s igna l s  are a l s o  displayed on a l abora to ry  c o n t r o l  con- 

sole and t h e  c o n t r o l  maneuvers may be performed manually, semiautomatically, o r  

automatically.  For manual cont ro l ,  t h e  p i l o t  c o m n d s  d i r e c t  torques from t h e  

CMG's or  r eac t ion  engines by means of a th ree -ax i s  c o n t r o l  s t i c k ;  and f o r  s e m i -  

automatic cont ro l ,  t h e  p i l o t  s e l e c t s  a d e s i r e d  r a t e  about a l abora to ry  axis by 

r o t a t i n g  a PROGRAMED RATE knob. 

A schematic of t h e  r e a c t i o n  c o n t r o l  system i s  shown i n  figure 6. The sys- 

t e m  uses  e a r t h  s t o r a b l e  hypergolic b ip rope l l an t s ,  N2O4/MMH, which are fed t o  t h e  

radiation-cooled engines from m e t a l  bellows p o s i t i v e  expulsion tanks.  The 
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propellant and pressurant storage and control systems are located in an unpres- 

surized area within the laboratory. A l l  pressurant bottles are interconnected 

so that any bottle can supply gas to the propellant tank through the parallel 
* 

regulator system. Ambient nitrogen is controlled normally by one side of the 

parallel regulator while the other side serves as an inactive backup. In case 

of malfunction, the backup is automatically selected by pressure switch rating 

elements. Burst disks, backed by relief valves, guard against propellant tank 

overpressure. This method eliminates leakage until the disk is ruptured, and 

the relief valve prevents additional l o s s  of propellants. Propellant and gas 

fill, drain and vent systems can be controlled remotely; and protection against 

leakage and guaranteed shutoff is provided by two solenoid valve seats installed 

in series in each line. 

ZERO GRAVITY CONTROL 

Disturbance Torques 

The primary disturbance torques during zero-gravity operation arise from 

aerodynamic moments, gravity gradients, and centrifuge operation. A character- 

istic aerodynamic and gravity gradient torque profile for the roll solar mode is 

illustrated in figure 8. 

their diurnal bulge produce a biased aerodynamic torque. The corresponding 

Z-axis components of the aerodynamic and gravity gradient moments are given at 

the left of the figure. The torque, plotted against position in orbit, reaches 

a maximum of about 1.33 ft-lb. Corresponding laboratory attitude errors were 

determined with both proportional and ON-OFF control for the momentum storage 

system. The attitude error I) with the proportional control commands was 

In this orientation, the iso-density contours with 
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found to be as high as loo, while the ON-OFF control scheme held the attitude 

error to less than 0.1'. 
4 

Proportional control also resulted in somewhat higher gimbal angles 8G 

and correspondingly less efficient use of the CMG's than the ON-OFF control. 

Addition of an attitude integral feedback loop to the proportional commands may 

be as effective as ON-OFF control, though, and performance studies between these 

two control schemes are currently under way. 

The disturbance torques produced by the onboard centrifuge are cyclic and 

are illustrated in figure 9. The centrifuge, shown at the right of the figure, 

is operated three times per day to produce a l g  level in the Y-Z plane. Each 

operation requires 13 minutes to attain the l g  level and 5 minutes continuous 

operation for view conditioning at this level. 

about the X-axis is given at the left of the figure and must be counteracted by 

the momentum storage system. Two control schemes to compensate for this torque 

were again analyzed and the corresponding laboratory response is presented in 

the figure. 

inadequate and resulted in maximum attitude errors of about 4.1°. 

ON-OFF commands essentially eliminated these errors for the centrifuge spinup 

operation. 

The resultant spinup torque 

Control for the MORL with proportional commands was found to be 

Control with 

Differential Desaturation 

In the event that the momentum storage system becomes saturated and must be 

unloaded to maintain the required position accuracy for the laboratory, the 

reaction engines are used for desaturation of the control moment gy ros .  

functional schematic of the unload logic for the momentum storage system is 

shown in figure 9. 

gimbal angle and rate is transmitted to the unload logic through two Schmitt 

A 

A signal voltage, whose amplitude is a function of the 
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t r i g g e r s .  The s top  unload Schmitt l e v e l  i s  s e t  t o  t h e  gimbal angle t o  which it 

i s ,des i r ed  t o  unload and t h e  commence unload Schmi t t  l e v e l  i s  s e t  t o  coincide 

with the  m a x i m u m  gimbal angle allowed. 

i n i t i a t e  t h e  unloading sequence. The CMG gimbals a r e  then torqued toward t h e i r  

neu t r a l  pos i t i on  by applying a b i a s  coxnand input t o  the  gimbal torquer  power 

ampl i f ie rs .  Simultaneously, t h e  reac t ion  j e t s  f i r e  f o r  a prese lec ted  pulse  

i n t e r v a l .  When t h e  gimbal angle reaches t h e  des i red  unload gimbal angle,  t h e  

Schmitt t r i g g e r s  a r e  r e s e t  and the  unloading sequence i s  complete. 

c u i t r y  i s  provided for t h e  o ther  gimbal axes. 

Both of these  t r i g g e r s  must f i r e  t o  

Similar  c i r -  

The gimbal angle response f o r  t h i s  d i f f e r e n t i a l  desa tura t ion  scheme i s  

sketched i n  f i g u r e  10. 

t h e  lower Schmitt t r i g g e r  f i res  a t  50°. 

c a l  g rav i ty  grad ien t  and aerodynamic torque ac t ing  on t h e  vehicle  i n  t h e  roll 

s o l a r  mode. 

upper l i m i t  of 60°, t h e  ginibal to rquers  a r e  actuated and t h e  reac t ion  engines 

are f i r e d  t o  oppose t h e  gimbal torques and s t a b i l i z e  the  labora tory  during 

desa tura t ion .  When t h e  gimbal angle has decreased t o  t h e  s top  unload l e v e l ,  

t h e  torquers  are shut  off  and the  gimbal angle i s  again allowed t o  increase .  

The desa tu ra t ion  process  then continues u n t i l  t h e  dis turbance torque decreases.  

Here, t he  upper Schmitt t r i g g e r  has been s e t  a t  60° and 

The dis turbance corresponds t o  a ty-pi- 

A s  t h e  b iased  appl ied torque causes t h e  gimbal angle t o  exceed i t s  

Maneuver Mode 

The r eac t ion  engines are used t o  maneuver the  labora tory  as required f o r  

t h e  experimental  mission. 

input  s igna l s  t o  t h e  r a t e - l imi t ed  cont ro l  logic,  which then ac tua te s  t h e  appro- 

p r i a t e  r eac t ion  engines.  Resul t s  f o r  a t y p i c a l  maneuver are given i n  f i g u r e  11. 

The commanded maneuver i s  a 100 r o t a t i o n  with a 0.5' per  second rate l i m i t  about 

Pos i t ion  o r  r a t e  commands a r e  generated as b iased  
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all three vehicle axes, and the figure illustrates the laboratory attitude and 

control torque time history. It can be seen that the new attitude is achieved 

in approximately 24 seconds with a fuel consumption of 16 pounds for the 60- 
4 

pound thrusters. 

The reaction engines also serve as backup for the momentum storage system 

and provide control during the initial unmanned mode. 

ARTIFICIAL GRAVITY MODE 

Spinup Operation 

For an artificial gravity launch, the MORL is stabilized by jets in a 

nonspinning solar orientation mode until manning of the laboratory has been 

completed. 

produce the desired artificial-gravity level. A functional diagram of the 

spinup operation is presented in figure 12. The spinup jets are turned on to 

begin rotation of the MORL about the -Y-axis. R o l l  attitude control is main- 

tained throughout the maneuver, and the laboratory and booster are given an 

initial separation rate by means of separation struts. The cables connecting 

the booster and laboratory are then extended at a nominal rate of 0.1 ft/sec 

and the MORL spin rate is held to small perturbations about a nominal rate of 

0.1 rad/sec. 

to cable extension exceeds the preset perturbation deadband. 

torque then increased the spin rate until the upper deadband limit is reached 

and the jets are turned off. This process is continued until the final cable 

extension is reached. 

rate. Despin is accomplished by reversing the order of this sequence. 

The laboratory module and booster combination are then spun up to 

The spinup jets are actuated whenever the spin rate deviation due 

The resulting 

The laboratory is then spun up to the desired angular 
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. 
Precession Control and Wobble Damping 

' The solar orientation during spinning operation will be maintained by the 
reaction engines which precess the laboratory to compensate for gravity gradi- 

ents and orbital regression. The control torque for determining thrust pulses 

is essentially inherent in a masked sun sensor. Precession thrust corrections 

are applied when the sensed sun angle exceeds a nominal threshold and the sun is 

detected in one of the unmasked sensor areas. Thrust commands are stopped when 

the sensed sun angle is less than a built-in hysteresis cutoff threshold. 

Internal disturbance torques, such as crew motions and cargo transfer, and 

external moments, such as docking impulses, produce nutation or wobbling motions 

of the laboratory in the artificial-gravity mode. Damping and control of these 

motions is accomplished by one of the two double-gimbal CMG's comprising the 

momentum storage system. The other double-gimbal CMG is used as a backup in 

case of failure of the primary damper. 

Characteristic results for MORL control with the momentum storage system 

are illustrated in figure 13. The disturbance here corresponds to an extreme 

case for which a l l  crew members suddenly migrate to one corner of the laboratory. 

The associated motion is shown by time histories of the MORL laboratory solar 

sensor outputs. 

reduced to approximately zero in 12 spin cycles and are held at zero by the 

gyroscopic torque resulting from precession of the deflected CMG. 

The laboratory attitude errors produced by the crew motion are 

Removal of 

the disturbance causes the CMG to return to its neutral position. 

CONCLUDING REsIARKS 

The integrated control system and the function of the various components of 

this system in stabilizing the MORL have been discussed. The system presented 
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here forms a baseline for current studies aimed at optimizing the subsystem 

logic and gain factors for laboratory control. These studies incorporate the 

accuracy and orientation requirements developed by concurrent research to define 

the MORL experimental program and will evaluate the effectiveness of this system 

in meeting the experimental requirements. 

Work on the mechanization of the control system is also underway. Primary 

4 efforts in this area include the development of a Control Flight Test Simulator, 

which will be capable of evaluating the performance of both scaled and full- 

scale integrated control system hardware for MORL and simulation studies of the 

efficiency of pilot control5 for the laboratory. 

1. Kurzhals, Peter R.: Stability and Control for the Manned Orbital Laboratory. 

Paper presented at the Thirteenth Meeting of the SAE A-18 Committee, 

December 1963. 

2. Douglas Aircraft Company, Inc.: MORL Stabilization and Control System. Base- 

line Configuration and Substantiation Data. Contract NAS1-3612, 1964. 

3. Douglas Aircraft Company, Inc.: Optimization of a MORL System Concept. 

Douglas Report SM-46043, Confidential, Contract NAS1-$12, 1964. 

4. Sperry Rand Systems Group: Control Flight Test Simulator, Engineering 

Investigation and Preliminary Design. Contract NAS1-4155, 1964. 

5 .  Will, Ralph W.: Manual Control for the MORL. Paper presented at the Four- 

teenth Meeting of the SAE A-18 Committee, July 1964. 
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